MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice.
نویسندگان
چکیده
Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems (P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice (P = 0.022) and were weakly correlated with c-RET transcript levels (P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation.
منابع مشابه
BÉATRICE mice brain stem control of respiratory frequency in newborn pathway involvement in development
mice brain stem control of respiratory frequency in newborn pathway involvement in development of RET / MASH-1 You might find this additional info useful... 24 times a year (twice monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD systems with techniques linking genes and pathways to physiology, from prokaryotes to eukaryotes. It is published publishes results of a...
متن کاملA Model of the Respiratory System in the Newborn Infant
A dynamic mathematical model is presented which successfully simulates the respiratory control system of the newborn infant in different physiological conditions. The primary objective in constructing this model has been to provide a simulation aid in the investigation of maturation of the respiratory system, and the respiratory disorders during the newborn period, without the need for invasive...
متن کاملAltered respiratory pattern and hypoxic response in transgenic newborn mice lacking the tachykinin-1 gene.
Substance P is known to be involved in respiratory rhythm and central pattern-generating mechanisms, especially during early development. We therefore studied respiratory responses in transgenic newborn mice (Tac1(-/-)) lacking substance P and neurokinin A (NKA). In vivo, the effects of intermittent isocapnic hypoxia (IH) and hypercapnia were studied using whole body flow plethysmography at P2-...
متن کاملTranscription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system.
Like other tissues and organs in vertebrates, multipotential stem cells serve as the origin of diverse cell types during genesis of the mammalian central nervous system (CNS). During early development, stem cells self-renew and increase their total cell numbers without overt differentiation. At later stages, the cells withdraw from this self-renewal mode, and are fated to differentiate into neu...
متن کاملThe effect of fluoxetine on thermal hyperalgesia in STZ-induced diabetic mice: possible involvement of 5-HT1/2 receptors
Diabetic neuropathic pain, an important micro vascular complication in diabetes mellitus, has been recognized as one of the most difficult types of pain to treat. Lack of understanding of etiology involved, inadequate relief, development of tolerance and potential toxicity of classical anti-nociceptive agents warrants the investigation of newer agents to relieve this pain. The aim of the presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2001